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SUMMARY 

An application of the depth-integrated k--E turbulence model is presented for separated flow in a wide, 
shallow, rectangular channel with an abrupt expansion in width. The well-known numerical problems 
associated with the use of upwind and central finite differences for convection are overcome by the adoption of 
the spatially third-order accurate QUICK finite difference technique. Results show that modification of the 
depth-integrated k--E turbulence closure model for streamline curvature leads to significant improvement in 
the agreement between model predictions and experimental measurements. 
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INTRODUCTION 

Many of the free surface flow problems encountered by hydraulic engineers can be suitably 
analysed by means of the depth-integrated equations of motion. A consequence of adopting a 
depth-integrated modelling approach is that closure approximations must be implemented to 
represent the so called effective stresses.' 

The effective stresses, as defined by Kuipers and Vreugdenhil,2 consist of the depth-integrated 
viscous stresses, which are usually negligible, the depth-integrated turbulent Reynolds stresses, and 
additional stresses resulting from the depth-integration of the non-linear convective accelerations 
(here after called momentum dispersion). Existing closure schemes for momentum di~persion'.~ 
lack sufficient numerical and experimental verification to warrant consideration at this time, so 
attention is consequently focused on examining closure for the depth-integrated turbulent 
Reynolds stress. 

In this paper, a test application of the depth-integrated k--E turbulence closure model is 
presented for separated flow in a wide, shallow, rectangular channel with an abrupt, symmetric 
expansion in width (Figure 1). The numerical technique employed is the spatially third-order 
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Figure 1. Definition sketch for a channel expansion 

accurate QUICK (quadratic upstream interpolation for convective kinematics) finite difference 
method of L ~ o n a r d . ~  The performance of the depth-integrated k--G turbulence closure model is 
evaluated by comparison of numerical results with experimental measurements of flow past a 
rearward-facing step.’ 

DEPTH-INTEGRATED EQUATIONS OF MOTION 

Under the assumption of a homogeneous, incompressible, viscous flow characterized by a 
hydrostatic pressure distribution, with wind and Coriolis forces neglected, the depth-integrated 
equations of motion are written2 

ah d(V,h) -+-- - 0  
at ax, 

in which rn, n = 1, 2 and repeated indices require summation, V, = two-dimensional depth- 
averaged velocity vectors ( U ,  V ) ,  11 = water depth, t = time, X ,  = co-ordinate directions (s,y), 
g = acceleration due to gravity, zb = channel bottom elevation above an arbitrary datum, 
T ~ ,  = components of the bottom shear stress per unit mass and T,, = components of the depth- 
integrated effective stress tensor per unit m a s 6  The bottom stress terms are parameterized in 
accordance with the quadratic shear stress law, namely 

where 4 = ( U 2  + V2)’j2 is the magnitude of the depth-averaged resultant velocity vector and c is a 
friction coefficient. The depth-integrated effective stress tensor per unit mass is written 

in which v = kinematic viscosity, u; = horizontal turbulent velocity fluctuations, v, = three 
dimensional time averaged velocity components and z = vertical co-ordinate direction. The 
contributions to the effective stress tensor (equation (4)) are the viscous stresses, Reynolds stresses 
and momentum dispersion, respectively. In the present work, momentum dispersion is neglected, 
and attention is focused on closure of the depth-integrated Reynolds stresses. 
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TURBULENCE CLOSURE MODEL 

The turbulence closure model adopted to represent the depth-integrated Reynolds stresses is a 
modification of the depth-integrated k-c: turbulence model presented by Rastogi and Rodi7 The 
depth-integrated k - E  turbulence model, which is based on a Boussinesq eddy viscosity hypothesis,8 
relates the depth-integrated Reynolds stresses to the depth-integrated strain rates by 

where the caret denotes depth-averaged values. The depth-averaged kinematic eddy viscosity, $,, is 
computed from 

where the distribution of the depth-averaged turbulence kinetic energy per unit mass, f;, and its rate 
of dissipation, 8, are determined by the solution of the following transport equations, which when 
written in conservation form read: 

in which 

The source terms P, and P, are included in the depth-integrated version of the k-c: model to 
account for the production mechanism due to the vertical boundary layer. Following Rastogi and 
R ~ d i , ~  the source terms written in a conservation form consistent with equations (7)-(9) read 

where c and D are the non-dimensional friction and dispersion coefficients, respectively, which are 
defined under conditions of uniform flow along the centerline of an open channel. Experience 
indicates' that for smooth channels an assumption of D equal to 1.0 and c = 0.0045 is quite 
satisfactory. 

The values of the empirical constants found in equations (6)-(8), C,  = 1.44, C, = 1.92, C, = 0.09, 
ak = 1.0 and at = 1.3, are those recommended by Launder and Spalding." 

COMPUTATIONAL METHOD 

The numerical technique employed to obtain approximate solutions for the depth-integrated 
model equations is the third-order interpolation technique, QUICK. The QUICK finite difference 
technique, which is based on a conservative, control-volume integral formulation, possesses the 
desirable convective stability of upwind differencing, but is free of classical numerical diffusion. 

To apply QUICK in a depth-integrated transport model, each equation is integrated over its 
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Figure 2. Computational grid 

appropriate control cell on a constant space, staggered, square computation grid (Figure 2) and in 
time. For purposes of generality, the model equations can be written in the following vector form: 

where 
Uh 

Ft= ~~; FX = 

Yh U Uh + - T,, 
2 

U V h  - T-vy 

in which all variables have been defined previously. Adopting a first-order, explicit time 
integration, the exact control cell integration of equation ( 1  2) is then written: 

At 
AS 

Ft"" = Ft" - - [ ( F x ) ~  - (Fx)L + (Fy), - (Fy),,]" + G"At (14) 
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in which quantities in parentheses with subscripts R,  L, T and B denote right, left, top and bottom 
cell face averages, respectively, and bold-faced quantities denote cell averages. Although the 
ultimate interest of the present work is to achieve steady-state solutions, explicit time integration is 
retained as a suitable alternative to the use of iterative matrix reduction techniques which resort to 
linearization of the transport equations. It is well known that this is not the most efficient means of 
achieving a steady-state solution, however, it is a proven and well accepted technique. 

The cell and cell face averages required in equation (14) are approximated by integrating a six- 
point upstream weighted quadratic interpolation function over appropriate limits. To illustrate 
this procedure, consider the computation of the right cell face average of a field variable, f ,  using 
the information provided in Figure 3 .  In this case, the U and V velocity componcnts are both 
positive and directed to the right and up, respectively. Combining a Newton forward difference 
interpolation formula in the longitudinal, c,  direction with a Gauss backward difference 
interpolation formula in the transverse, 4, direction, a quadratic interpolation function is 
constructed which reads' 

+%v2 + M o , 1  + (; -; + cv) . fo , - l  - t 4 f 1 . - *  

where [ = x/As, and q = y/As are local non-dimensional co-ordinates. The right cell face average is 
then computed as follows: 

f 122 

Owing to the symmetry of the integration operation, a change in the sign of the V velocity 
component will not alter equation ( 1  6). However, a change in the sign of the U velocity component 
will require that the mirror image of Figure 3 be used with the indices shifted to the right by one. 
Performing the integration prescribed in equation (16) results in the following interpolation 
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Figure 3. Nodal information required for a quadratic interpolation stirface 
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formula: 

( f ) R  = K f 0 . o  +.fl ,o) - k ( f 2 , o  - 2f l  ,o  - . fo ,o)  + + 4 C f I ,  I - 2f'l .o +fl . - I )  (17) 
The purpose of this adjustment is to maintain the upstream weighting of the interpolation formula. 

MODEL SIMULATION 

Model simulations were performed for flow in a wide, shallow, rectangular channel with an abrupt, 
symmetric expansion in width (Figure I ) .  The physical parameters specified were an aspect ratio 
( = 1 + W,/Wo) of 1.45, a longitudinal channel slope of 0.0005, a transverse channel slope of zero 
and a friction coefficient of0.0045, which corresponds to a channel roughness height, zO, of 0.005 ft. 

The normal velocity component and the normal gradient of the tangential velocity component, 
the normal gradient of the water surface elevation, and the normal gradient of the turbulence 
kinetic energy per unit mass were set to zero at rigid walls. Wall boundary values for the energy 
dissipation rate per unit mass and the shear stress were obtained by the 'wall function' method." 
To apply the wall function method, it is necessary to assume that the near wall region is in local 
equilibrium so that the shear stress is constant and the logarithmic velocity law applies. Thus, the 
wall shear stress per unit mass is given by: 

where the value of the von Karman constant, IC, is defined to be 0.4 and the subscript w denotes 
values of the field variables located half a grid spacing from the wall. Similarly, within the constant 
shear stress layer, the turbulent length scale varies linearly; thus the near wall energy dissipation 
rate per unit mass is written 

The near wall values of the velocity components, and the turbulence kinetic energy per unit mass 
were obtained from their respective balance equations with, however, the usual shear stress terms 
replaced by the wall shear stress (equation (18)). It should, however, be noted that defining 
boundary values for the shear stress and velocity gradient at the wall is in fact redundant. The 
requirement of a boundary condition for the velocity gradient at the wall is purely numerical, and 
unique to solution techniques that account for transverse curvature. Test simulations performed to 
investigate a variety of methods for extrapolating the velocity gradient at the wall revealed no 
significant difference in the form of the recirculation cell, so, consequently, as a matter of 
convenience the zero gradient condition was adopted. 

A reflection boundary was enforced at the channel centreline by setting the normal velocity 
component, and the normal gradient of the remaining field variables to zero. 

The water surface elevation at the upstream boundary was specified to have zero gradient in the 
transverse direction, zero curvature in the longitudinal direction, and a constant depth of 5.0 ft. 
This configuration corresponds to a unidirectional inflow boundary in which the transverse 
velocity component, V, was set to zero, and the longitudinal velocity component, U ,  was obtained 
from continuity. In addition, the turbulence quantities &h and t h  were assumed to have zero 
curvature in the longitudinal direction. 
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The downstream boundary configuration was essentially identical to the upstream boundary 
with the exception that the depth was initially set to 4.9 ft, for purposes of accelerating convergence, 
and then was allowed to vary as the solution evolved. 

An initial condition for the k-c turbulence closure simulations was generated by running a 
constant eddy viscosity version of the model to an approximate steady state. A steady state, 
constant eddy viscosity of 2.0 ft2/s was found to be consistent with the earlier assumption on the 
value of the non-dimensional dispersion coefficient (i.e. I) = 1.0). An arbitrary initial condition was 
used in the constant eddy viscosity computation with the interior water surface elevations set to 
5Oft, and the velocity components set to zero. 

The computational region consisted of a 27 x 1 1 mesh upstream of the abrupt expansion, and a 
77 x 16 mesh downstream of the expansion. 

RESULTS AND DISCUSSTON 

In order to generate a region of recirculation, it was necessary to adopt a grid spacing of 50ft, 
which ensured that the convective acceleration and the turbulent transport terms were the same 
order of magnitude as the bottom friction terms. Using a stable time step of 0.01 s and 4000 
iterations, approximately 140min of CPU time on an IBM 3032 was required to achieve a steady 
solution. 

Results are presented in Figure 4, a vector plot of the depth-averaged resultant velocities, and 
Figures 5- 7, comparisons of the predicted depth-averaged longitudinal velocity profiles with the 
experimental measurements of Moss et al? 

Experimental measurements of the non-dimensional reattachment length (x , /W,)  have been 
found to vary significantly from one study to the Consequently, for purposes of 
comparison, a numbcr of experimental results are prescnted in Figure 8, a plot of published non- 
dimensional reattachment lengths as a function of the inlet channel aspect ratio (h/W,). In the 
present work, the inlet channel aspect ratio was approximately 0.1, which suggests that the non- 
dimensional reattachment length should be about 4.5 to 50. However, it is seen in Figure 4 that the 
predicted non-dimensional reattachment length is only about 3.2. 

The overall poor agreement between model predictions and experimental measurements is 
directly attributable to the over-prediction of the depth-averaged eddy viscosity in the region of 
strong streamline curvature. In an attempt to improve the model predictions, an approximation to 
the streamline curvature modification of Leschziner and Rodi l 3  was employed. Leschziner and 
Rodi used a simplified algebraic Reynolds stress model to derive a streamline curvature dependent 
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Figure 4. Depth-averaged velocity field for the standard ( k  --&) model simulation. Note: grid points are located at the 
midpoints or the vclocity vectors 
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Figure 5. Comparison of standard (k-8)  model predictions with the experimental velocity measurements of Moss el aL5 
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Figure 6. Comparison or standard ( k  - E )  model predictions with thc experimental velocity mcasurements or Moss Pt 

form of the coefficient C,L. The improved agreement between model predictions and experimental 
measurements of separated flow in annular and twin parallel jets, gained through use of the 
curvature modifications, suggested the validity of the argument that the value of C, is significantly 
reduced in regions of strong streamline curvature. Consequently, as a first approximation, the 
value of C, was decreased to 0.03 at all grid points interior to the wall function grid points in the 
region downstream of the step for a distance of 6W,. The value of 0.03 was chosen on the basis that 
it represents a reasonable average over the distribution of C,, computed by Leschziner and Rodi.' 
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Figure 7. Comparison of standard (k-8) model predictions with the experimental velocity measurements of Moss et al.’ 
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Figure 8. Plot of non-dimensional reattachment length measurements versus the inlet channel aspect ratio: 0 Abbott and 
Klinei4; + Mohsen et al.”; V Moss et al.’; 0 Kim et ~ 1 . ’ ~ ;  4 Etheridge and Kemp”; b Davis and Snel118; Armaly et 

al.l9; A Durst and Tropea” 
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Figure 10. Comparison of curvature (k--6) model predictions with the experimental measurements of Moss et aL5 
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Figure I I. Comparison ofcurvaturecorrected(k-&)model predictions with theexperimental measurements of Moss et aL5 
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Examination of Figure 9, a vector plot of the depth-averaged velocities, reveals a significant 
increase in the non-dimensional reattachment length x,/W1, resulting from curvature modification. 
The predicted value in this simulation is approximately xJW, = 4.6 which agrees well with the 
experimental measurement depicted in Figure 8. In addition, a-marked improvement is seen in the 
comparison of the velocity profiles in the region near reattachment (Figures 10-12). 

SUMMARY AND CONCLUSIONS 

In summary, a test application of the depth-integrated k--E turbulence closure model has been 
presented for separated flow in a wide, shallow, rectangular channel with an abrupt, symmetric 
expansion in width. The well-known numerical problems associated with the use of upwind and 
central differencing for convection have been overcome by the adaption of the spatially third-order 
accurate QUICK finite difference method. Based on the numerical tests performed, it can be 
concluded that use of the standard depth-integrated k--E turbulence model results in a significant 
underprediction of the non-dimensional reattachment length (xJWl).  However, when the depth- 
integrated k--E model was modified, by means of an ad hoc streamline curvature correction, a 
marked improvement in the model predictions resulted. Consequently, the effects of depth-mean 
streamline curvature have been shown to be significant, which suggests that future work is needed 
to examine the relationship between streamline curvature correction in the depth-integrated k--E 
model and the neglected contribution of momentum dispersion.’ 

ACKNOWLEDGEMENT 

This research is supported by the US. National Science Foundation, Grant No. CME-8004364. 

REFERENCES 

1. C. Flokstra, ‘The closure problem for depth averaged two-dimensional flows’, Paper A106, 17th IAHR Congress, 
Baden-Baden, Germany, 1977. 



268 RAYMOND S. CHAPMAN AND CHlN Y. K U O  

2. J. Kuipers and C. B. Vreugdenhil, ‘Calculation of two-dimensional horizontal flow’, Keporr S 163-1, Delft Hydraulics 
Laboratory, 1973. 

3. M. B. Abbott and C. H. Rasmussen, ‘On the numerical modeling of rapid expansions and contractions in models that 
are two-dimensional in plan’, Paper A l 0 4 ,  17th I A H R  Congress, Baden-Baden, Germany, 1977. 

4. B. P. Leonard, ‘A stable and accurate convective modelling procedure based on quadratic upstream interpolation’, 
Computer Methods in Applied Mechunics and Engineering, 19, (1979). 

5. W. D. Moss, S. Baker and L. J. S. Bradbury, ‘Measurements of mean velocity and Reynolds stresses in some regions of 
recirculating flow’, Proceedings, Symposium on Turbulent Shear Flows, Pennsylvania State University, Vol. I ,  1977. 

6. J. K. Eaton and J. P. Johnston, ‘A review ofresearch on subsonic turbulent flow reattachment’, A I A A  Journal, 19, (9), 
( 198 I) .  

7. A. Rastogi and W. Rodi, ‘Prediction of heat and mass transfer in open channels’, Journal o f t h e  t fydruulic D 
ASCE, HY3,(1978). 

8. 0. J. Hinze, Turbulence, McGraw-Hill, New York, 1959. 
9. R.  S. Chapman, ‘Numerical simulation of two-dimensional subcritical flow in a symmetric open channel expansion 

using the depth-integrated two-equation ( k - 8 )  turbulence model’, A Doctoral Dissertation, Virginia Polytechnic 
Institute and State University, 1982. 

10. B. E. Lauder and D. B. Spalding, ‘The numerical calculation of turbulent flows’, Computer Mrlhods in Appliccl 
Mechunics and Engineering, 3, (1974). 

1 I .  F. B. Hildebrand, Inlroduction to  Numerical Analysis, McGraw-Hill, New York, 1956. 
12. F. Durst and C. Tropea, ‘Turbulent, backward-facing step flows in two-dimensional ducts and channels’. Proceedings. 

Third Syniposium on Turbulent Shear Flows, University of California, Davis, September I98 I .  
13. M. A. Leschziner and W. Rodi, ‘Calculation of annular and twin parallel jets using various discretization schemes and 

turbulence-model variations’, Journal of Fluids Engineering, Transactions, A S M E ,  103, (1981). 
14. D. E. Abbott and S. J. Kline, ‘Experimental investigation ofsubsonic turbulence flow over single and double backward 

facing steps’, Journal of Basic Engineering, Transections, A S M E ,  84, (1962). 
15. A. M. Mohsen, ‘Experimental investigation of the wall pressure fluctuation in subsonic separated flows’. Boeing 

Company, Report # D6-17094, 1967. 
16. J. Kim. S. J. Kline and J. P. Johnston, ‘Investigation ofseparation and reattachment ofa  turbulent shear layer: flow over 

a backward-facing step’, Report MD-37, Therniosciences Division, Department of Mechanical Engineering, Stanford 
University, April 1978. 

17. D. W. Etheridge and P. H. Kemp, ‘Measurements of turbulent flow downstream of a rearward-facing step’, Journal of 
Fluid Mechanics, 86, (3), ( 1  978). 

18. T. W. Davis and D. J. Snell, ‘Turbulent flow over a two-dimensional step and its dependence upon upstream flow 
conditions: Proceedings. Symposiurn on Turbulent Shear Flows, Pennsylvania State University, Vol. I ,  1977. 

19. B. F. Armaly, F. Durst and V. Kottke,‘Momentum, heat and mass transfer in backward-facing step flows’, Proceedings, 
Third Symposium on Turbulent Shear Flows, University of California, Davis, September 1981. 




